New characterizations of Besov and Triebel--Lizorkin spaces over spaces of homogeneous type
From MaRDI portal
Publication:854050
DOI10.1016/j.jmaa.2006.01.068zbMath1105.42012OpenAlexW1991363351MaRDI QIDQ854050
Publication date: 7 December 2006
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2006.01.068
Besov spaceTriebel-Lizorkin spaceCalderón reproducing formulaT1 theoremPlancherel-Pôlya inequalities
Maximal functions, Littlewood-Paley theory (42B25) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35)
Related Items
\(T1\) theorem for inhomogeneous Triebel-Lizorkin and Besov spaces on RD-spaces and its application, New characterizations of inhomogeneous Besov and Triebel-Lizorkin spaces over spaces of homogeneous type, A Plancherel-Polya inequality in Besov spaces on spaces of homogeneous type
Cites Work
- A discrete transform and decompositions of distribution spaces
- Lipschitz functions on spaces of homogeneous type
- Discrete Calderón-type reproducing formula
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- \(T1\) theorem for Besov and Triebel-Lizorkin spaces
- Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications
- Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces
- A T(b) theorem with remarks on analytic capacity and the Cauchy integral
- New characterizations and applications of inhomogeneous Besov and Triebel–Lizorkin spaces on homogeneous type spaces and fractals
- Some Maximal Inequalities