On the Iwasawa invariants of the cyclotomic \(\mathbb Z_2\)-extensions of certain real quadratic fields
From MaRDI portal
Publication:854388
DOI10.3836/tjm/1166661877zbMath1170.11039OpenAlexW1996102825MaRDI QIDQ854388
Publication date: 12 December 2006
Published in: Tokyo Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3836/tjm/1166661877
Quadratic extensions (11R11) Class numbers, class groups, discriminants (11R29) Iwasawa theory (11R23) Other abelian and metabelian extensions (11R20)
Related Items (8)
Greenberg’s conjecture for real quadratic fields and the cyclotomic ℤ₂-extensions ⋮ On metabelian 2-class field towers over -extensions of real quadratic fields ⋮ The structure of the unramified abelian Iwasawa module of some number fields ⋮ Structure of 2-class groups in the \(\mathbb{Z}_2\)-extensions of certain real quadratic fields ⋮ \(p\)-adic approach of Greenberg's conjecture for totally real fields ⋮ Pseudo-null Iwasawa modules for \(\mathbb Z_2^2\)-extensions ⋮ On unramified Galois $2$-groups over $\mathbb Z_2$-extensions of real quadratic fields ⋮ On the Iwasawa λ-invariant of the cyclotomic ℤ2-extension of ℚ(pq) and the 2-part of the class number of ℚ(pq,2 + 2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A note on class numbers of algebraic number fields
- On the Iwasawa \(\lambda_2\)-invariants of certain families of real quadratic fields
- On the Iwasawa \(\lambda\)-invariant of the cyclotomic \(\mathbb Z_2\)-extension of a real quadratic field
- On Γ-extensions of algebraic number fields
- On the Iwasawa Invariants of Totally Real Number Fields
This page was built for publication: On the Iwasawa invariants of the cyclotomic \(\mathbb Z_2\)-extensions of certain real quadratic fields