Structure theorems of \(H_4\)-Azumaya algebras.
From MaRDI portal
Publication:854906
DOI10.1016/j.jalgebra.2005.10.020zbMath1111.16037OpenAlexW1993612166MaRDI QIDQ854906
Yinhuo Zhang, Aaron Armour, Hui-Xiang Chen
Publication date: 7 December 2006
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2005.10.020
Hopf algebrasantipodesBrauer groupscentralizerscentersAzumaya algebrasbraided monoidal categoriesmodule algebrascentral simple graded algebrastriangular structures
Related Items
Structure theorems of \(E(n)\)-Azumaya algebras. ⋮ On the subgroup structure of the full Brauer group of Sweedler Hopf algebra.
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Biinvertible actions of Hopf algebras
- Computing the Brauer-Long group of \({\mathbb{Z}}/2\) dimodule algebras
- Coalgebra actions on Azumaya algebras
- The Brauer group of a braided monoidal category
- Quantum Yang-Baxter module algebras
- Cocycle twisting of \(E(n)\)-module algebras and applications to the Brauer group.
- The Brauer group of dimodule algebras
- Four-dimensional Yetter-Drinfeld module algebras over \(H_4\).
- SOME ISOMORPHISMS FOR THE BRAUER GROUPS OF A HOPF ALGEBRA
- Cocycle Deformations and Brauer Groups
- Crossed Products and Inner Actions of Hopf Algebras
- Quasitriangular structures for some pointed hopf algebras of dimension 2n
- The Brauer group of Yetter-Drinfel’d module algebras
- The Brauer group of Sweedler’s Hopf algebra 𝐻₄
- Graded Brauer Groups.
- The Brauer-Wall Group of a Commutative Ring