Time shifted aliasing error upper bounds for truncated sampling cardinal series
DOI10.1016/j.jmaa.2005.12.008zbMath1105.94002OpenAlexW2014183783MaRDI QIDQ855637
Andrew Ya. Olenko, Tibor K. Pogány
Publication date: 7 December 2006
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2005.12.008
Fourier transformupper boundasymptotic behaviourentire functionstruncation errorextremal functionaliasingsharp boundapproximation/interpolation error levelDirichlet lambda functionincomplete lambda functionmultidimensional samplingPlancherel--Pólya inequalityregular sampling theoremWhittaker-Kotel'nikov-Shannon sampling formula
Rate of convergence, degree of approximation (41A25) Approximation by other special function classes (41A30) Sampling theory in information and communication theory (94A20)
Related Items (5)
Cites Work
- The sampling theorem and linear prediction in signal analysis
- On the aliasing error upper bound for homogeneous random fields
- Estimation of energy aliasing error for nonbandlimited signals
- Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error
- Two-channel perfect reconstruction FIR filter banks over commutative rings.
- On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem
- Fonctions entières et intégrales de Fourier multiples. II
- The Shannon sampling theorem—Its various extensions and applications: A tutorial review
- Two Remarks on the Reconstruction of Sampled Non-Bandlimited Functions
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Time shifted aliasing error upper bounds for truncated sampling cardinal series