The generalized Mandelbrot-Julia sets from a class of complex exponential map
DOI10.1016/j.amc.2006.02.010zbMath1136.65118OpenAlexW2037373834WikidataQ122260388 ScholiaQ122260388MaRDI QIDQ856050
Publication date: 7 December 2006
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2006.02.010
fractal growthexplosiongraphical examplesexperimental mathematicscomplex exponential mapdistribution of periodicity petalgeneralized Mandelbrot-Julia sets
Small divisors, rotation domains and linearization in holomorphic dynamics (37F50) Fractals (28A80) Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets (37F10) Numerical chaos (65P20)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Switched processes generalized Mandelbrot sets for complex index number
- ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0)
- Iteration of exponential functions
- Julia sets and bifurcation diagrams for exponential maps
- On iterates of ez
- Misiurewicz Points for Complex Exponentials
- Ordering of the Mandelbrot-like set of the exponential map
- Indecomposable continua in exponential dynamics
This page was built for publication: The generalized Mandelbrot-Julia sets from a class of complex exponential map