A construction of covers of arithmetic schemes
From MaRDI portal
Publication:863336
DOI10.1016/j.jnt.2006.01.006zbMath1120.14014OpenAlexW2001049267MaRDI QIDQ863336
Publication date: 26 January 2007
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2006.01.006
Geometric class field theory (11G45) Arithmetic varieties and schemes; Arakelov theory; heights (14G40)
Related Items (10)
Notes on isocrystals ⋮ Covering data and higher dimensional global class field theory ⋮ Smallness of fundamental groups for arithmetic schemes ⋮ Survey on some aspects of Lefschetz theorems in algebraic geometry ⋮ Class field theory for arithmetic schemes ⋮ The kernel of the reciprocity map of simple normal crossing varieties over finite fields ⋮ Semi-continuity of conductors, and ramification bound of nearby cycles ⋮ Class field theory, its three main generalisations, and applications ⋮ Higher class field theory and the connected component ⋮ The monodromy groups of lisse sheaves and overconvergent \(F\)-isocrystals
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Finiteness theorems in geometric classfield theory. (With an appendix by Kenneth A. Ribet)
- Non-abelian class field theory for arithmetic surfaces
- Algebraic K-theory and classfield theory for arithmetic surfaces
- Covers of varieties with completely split points
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Sur les séries $L$ d'une variété algébrique
- Tamely ramified covers of varieties and arithmetic schemes
- Tame coverings of arithmetic schemes.
This page was built for publication: A construction of covers of arithmetic schemes