On the limit set at infinity of a gradient trajectory of a semialgebraic function
From MaRDI portal
Publication:863919
DOI10.1016/J.JDE.2006.10.009zbMath1128.32006OpenAlexW2009934967MaRDI QIDQ863919
Publication date: 12 February 2007
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jde.2006.10.009
Related Items (3)
Tangencies and polynomial optimization ⋮ A convex function satisfying the Łojasiewicz inequality but failing the gradient conjecture both at zero and infinity ⋮ Gradient trajectories for plane singular metrics. I: Oscillating trajectories
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Bifurcation sets of functions definable in \(o\)-minimal structures
- Stratifications de Whitney et théorème de Bertini-Sard
- On the dynamics of gradients. Existence of invariant manifolds
- Sur la topologie des fibres d'une fonction définissable dans une structure o-minimale. (On the topology of fibers of functions definable in an o-minimal structure)
- Semialgebraic Sard theorem for generalized critical values.
- On gradient at infinity of semialgebraic functions
- Proof of the gradient conjecture of R. Thom.
This page was built for publication: On the limit set at infinity of a gradient trajectory of a semialgebraic function