On the equivalence of heat kernel estimates and logarithmic Sobolev inequalities for the Hodge Laplacian
From MaRDI portal
Publication:863931
DOI10.1016/J.JDE.2006.10.007zbMath1113.35035OpenAlexW2084341486MaRDI QIDQ863931
Publication date: 12 February 2007
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jde.2006.10.007
heat operatorlogarithmic Sobolev inequalitiesHodge LaplacianultracontractivityBochner techniqueBochner Weitzenböck formula
Heat equation (35K05) A priori estimates in context of PDEs (35B45) Partial differential equations on manifolds; differential operators (58J99)
Related Items (3)
Heat flow on 1-forms under lower Ricci bounds. Functional inequalities, spectral theory, and heat kernel ⋮ On the spectrum of the Laplacian ⋮ Spectral gaps on complete Riemannian manifolds
Cites Work
- On the \(L^p\) independence of the spectrum of the Hodge Laplacian on non-compact manifolds
- Analysis of the Laplacian on a complete Riemannian manifold
- Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne
- Logarithmic Sobolev Inequalities
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On the equivalence of heat kernel estimates and logarithmic Sobolev inequalities for the Hodge Laplacian