A geometrical setting for geometric phases on complex Grassmann manifolds
From MaRDI portal
Publication:864836
DOI10.1016/j.geomphys.2006.06.002zbMath1108.58005OpenAlexW2076273041MaRDI QIDQ864836
Maria Cristina Abbati, Alessandro Manià
Publication date: 13 February 2007
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.geomphys.2006.06.002
Geodesics in global differential geometry (53C22) Issues of holonomy in differential geometry (53C29) Group structures and generalizations on infinite-dimensional manifolds (58B25)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Semibounded unitary representations of double extensions of Hilbert-loop groups
- Hamiltonian systems on complex Grassmann manifolds. Holonomy and Schrödinger equation
- Über die Automorphismen Grassmannscher Mannigfaltigkeiten unendlicher Dimension
- On the nonlinear extension of quantum superposition and uncertainty principles
- The geometry of spaces of projections in \(C^*\)-algebras
- Holonomic quantum computation
- Projective spaces of a \(C^*\)-algebra
- Structure groups and holonomy in infinite dimensions
- Introduction to Grassmann manifolds and quantum computation
- The homotopy type of the unitary group of Hilbert space
- Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné
- Lie groups with Banach spaces as parameter spaces
- Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space
- QUANTUM HOLONOMIES FOR QUANTUM COMPUTING
- Quantal phase factors accompanying adiabatic changes
- TOPOLOGIES ON THE SET OF ALL SUBSPACES OF A BANACH SPACE AND RELATED QUESTIONS OF BANACH SPACE GEOMETRY
- The Rectifiable Metric on the Set of Closed Subspaces of Hilbert Space
- THE RECTIFIABLE METRIC ON THE SPACE OF PROJECTIONS IN A C*-ALGEBRA
- Existence of Universal Connections