Cup product, étale capitulation kernels and generalized Greenberg conjecture
From MaRDI portal
Publication:864970
DOI10.1007/s10977-006-7104-0zbMath1156.11342OpenAlexW2475141369WikidataQ123353774 ScholiaQ123353774MaRDI QIDQ864970
Publication date: 13 February 2007
Published in: \(K\)-Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10977-006-7104-0
Galois cohomologyIwasawa theorycapitulationcup productweakened version of Greenberg's generalized pseudo-nullity conjecture
Related Items
\(K_2\) and the Greenberg conjecture in multiple \(\mathbb Z_p\)-extensions ⋮ Tate kernels and capitulation ⋮ On duality and Iwasawa descent ⋮ Bounds for étale capitulation kernels. II
Cites Work
- Unnamed Item
- Unnamed Item
- \(K_2\) and the Greenberg conjecture in multiple \(\mathbb Z_p\)-extensions
- Continuous étale cohomology
- Über gewisse Galoiscohomologiegruppen
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- Regulators and Iwasawa modules
- Relations between \(K_2\) and Galois cohomology
- \(K_ 3\) and \(p\)- adic Riemann-Hurwitz formulas
- A cup product in the Galois cohomology of number fields
- Bounds for étale capitulation kernels
- An idelic approach to the wild kernel
- Galois descent and \(K_ 2\) of number fields
- A Note on K 2 and the Theory of ℤ p -Extensions
- THE TATE MODULE FOR ALGEBRAIC NUMBER FIELDS