Hyperkähler structures and infinite-dimensional Grassmannians
From MaRDI portal
Publication:868929
DOI10.1016/j.jfa.2006.05.019zbMath1124.58004arXivmath-ph/0511056OpenAlexW2153821874MaRDI QIDQ868929
Publication date: 26 February 2007
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math-ph/0511056
Related Items
Geometric significance of Toeplitz kernels, Projective and Direct limits of Banach $G$ and tensor structures, Banach Poisson-Lie groups and Bruhat-Poisson structure of the restricted Grassmannian, Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits, On the classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits, On restricted diagonalization
Cites Work
- Complex analytic coordinates in almost complex manifolds
- Infinite dimensional Lie algebras. An introduction
- The Hamiltonian structure of the Maxwell-Vlasov equations
- Hyperkähler metrics and supersymmetry
- Reduction of symplectic manifolds with symmetry
- Plücker embedding of the Hilbert space Grassmannian and the CAR algebra
- Momentum maps and reduction in algebraic geometry
- Loop spaces as complex manifolds
- Differential geometry of Grassmannian embeddings of based loop groups
- On Nahm's equations and the Poisson structure of semi-simple complex Lie algebras
- Instantons and the geometry of the nilpotent variety
- On the complemented subspaces problem
- Integrability of analytic almost complex structures on Banach manifolds
- The geometry of the KdV equation
- Geometric Invariant Theory
- On the $\overline\partial$-equation in a Banach space
- Sur le théorème de Frobenius
- A Hyper-KÄHlerian Structure on Coadjoint Orbits of a Semisimple Complex Group
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item