The nonlinear membrane energy: variational derivation under the constraint ``\(\det \nabla u\neq 0\)
DOI10.1016/J.MATPUR.2006.01.004zbMath1114.35003OpenAlexW2041217130MaRDI QIDQ869108
Omar Anza Hafsa, Jean-Philippe Mandallena
Publication date: 26 February 2007
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.matpur.2006.01.004
PDEs in connection with optics and electromagnetic theory (35Q60) Energy minimization in equilibrium problems in solid mechanics (74G65) Variational methods applied to PDEs (35A15) Existence theories for free problems in two or more independent variables (49J10) Membranes (74K15)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Relaxation of variational problems in two-dimensional nonlinear elasticity
- \(W^{1,p}\)-quasiconvexity and variational problems for multiple integrals
- A variational definition of the strain energy for an elastic string
- An introduction to \(\Gamma\)-convergence
- Interchange of infimum and integral
- On the relaxation of nonconvex superficial integral functionals
- The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity
- Quasiconvexification of geometric integrals
- The lower quasiconvex envelope of the stored energy function for an elastic crystal
- Une méthode de Γ-convergence pour un modèle de membrane non linéaire
- Relaxation of singular functionals defined on Sobolev spaces
- Direct methods in the calculus of variations
This page was built for publication: The nonlinear membrane energy: variational derivation under the constraint ``\(\det \nabla u\neq 0\)