Computation of exact inertia and inclusions of eigenvalues (singular values) of tridiagonal (bidiagonal) matrices
DOI10.1016/j.laa.2006.09.008zbMath1118.65024OpenAlexW2151928524MaRDI QIDQ869919
Publication date: 9 March 2007
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://ora.ox.ac.uk/objects/uuid:936b303a-59d1-4228-9e65-ed21a2b8b2b9
error analysisnumerical quadratureinterval arithmeticparallel algorithmsfactorizationbidiagonal matricesbisectionsymmetric tridiagonal matricesfloating point rounding modesGolub-Kahan formIEEE standardJacabi matricesLDL\(^{t}\) factorizationmonotonic arithmeticmultsection
Computational methods for sparse matrices (65F50) Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Numerical solutions to overdetermined systems, pseudoinverses (65F20) Parallel numerical computation (65Y05)
Related Items (2)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Accurate singular values and differential qd algorithms
- Accurate ordering of eigenvectors and singular vectors without eigenvalues and singular values.
- On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic
- More Accurate Bidiagonal Reduction for Computing the Singular Value Decomposition
- Interval arithmetic
- Accurate Singular Values of Bidiagonal Matrices
- Matrix Analysis
- LAPACK Users' Guide
- Accurately Counting Singular Values of Bidiagonal Matrices and Eigenvalues of Skew-Symmetric Tridiagonal Matrices
- Eigenvalues of tridiagonal symmetric interval matrices
- ScaLAPACK Users' Guide
- On Computing an Eigenvector of a Tridiagonal Matrix. Part I: Basic Results
- Computing Accurate Eigensystems of Scaled Diagonally Dominant Matrices
- Calculation of Gauss Quadrature Rules
- Calculating the Singular Values and Pseudo-Inverse of a Matrix
- [https://portal.mardi4nfdi.de/wiki/Publication:5727059 Tables for the Evaluation of � ∞ 0 x β e -x f(x) dx by Gauss-Laguerre Quadrature]
This page was built for publication: Computation of exact inertia and inclusions of eigenvalues (singular values) of tridiagonal (bidiagonal) matrices