On some classes of lazy cocycles and categorical structures.
From MaRDI portal
Publication:872177
DOI10.1016/j.jpaa.2006.07.015zbMath1155.16030arXivmath/0510040OpenAlexW1994791511MaRDI QIDQ872177
Florin Panaite, Mihai D. Staic, Freddy M. J. van Oystaeyen
Publication date: 27 March 2007
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0510040
monoidal categoriescohomology groupsHopf algebrasDrinfeld doublesRadford biproductslazy cocyclescoboundariesentwined categories
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (6)
Pseudosymmetric braidings, twines and twisted algebras. ⋮ General twisting of algebras. ⋮ MORE EXAMPLES OF PSEUDOSYMMETRIC BRAIDED CATEGORIES ⋮ The lazy homology of a Hopf algebra. ⋮ Lazy 2-cocycle and Radford (m,n)-biproduct ⋮ Pseudotriangular weak Hopf algebras
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The structure of Hopf algebras with a projection
- The Brauer group of modified supergroup algebras.
- Skew pairing, cocycle deformations and double crossproducts
- Militaru's \(D\)-equation in monoidal categories
- Hopf bimodules, coquasibialgebras, and an exact sequence of Kac
- Cocycle twisting of \(E(n)\)-module algebras and applications to the Brauer group.
- Extending lazy 2-cocycles on Hopf algebras and lifting projective representations afforded by them.
- Double braidings, twists and tangle invariants
- Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras.
- PURE-BRAIDED HOPF ALGEBRAS AND KNOT INVARIANTS
- Cross product bialgebras. II
This page was built for publication: On some classes of lazy cocycles and categorical structures.