Poincaré inequality and Palais-Smale condition for the \(p\)-Laplacian
From MaRDI portal
Publication:873142
DOI10.1007/S00526-006-0055-8zbMath1134.35034OpenAlexW2047017253MaRDI QIDQ873142
Publication date: 28 March 2007
Published in: Calculus of Variations and Partial Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00526-006-0055-8
Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs (35P30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) A priori estimates in context of PDEs (35B45) Variational methods for second-order elliptic equations (35J20)
Related Items (4)
Improved Friedrichs inequality for a subhomogeneous embedding ⋮ Superlinear critical resonant problems with small forcing term ⋮ Solvability of the resonant 1-dimensional periodic \(p\)-Laplacian equations ⋮ On compactness conditions for the \(p\)-Laplacian
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Fredholm alternative at the first eigenvalue for the one dimensional \(p\)-Laplacian
- An improved Poincaré inequality and the \(p\)-Laplacian at resonance for \(p>2\)
- On the number and structure of solutions for a Fredholm alternative with the \(p\)-Laplacian.
- Bounded perturbations of homogeneous quasilinear operators using bifurcations from infinity
- Resonance problems for the \(p\)-Laplacian
- A strong maximum principle for some quasilinear elliptic equations
- On the Fredholm Alternative for the p -Laplacian in One Dimension
- On the Equation div( | ∇u | p-2 ∇u) + λ | u | p-2 u = 0
- C1 + α local regularity of weak solutions of degenerate elliptic equations
- On The Dirichletproblem for Quasilinear Equations
- Boundary regularity for solutions of degenerate elliptic equations
- Nonexistence of Solutions and an Anti-Maximum Principle for Cooperative Systems with thep-Laplacian
- On the Fredholm alternative for the p-Laplacian at the first eigenvalue
- The Fredholm alternative for the p-Laplacian: Bifurcation from infinity, existence and multiplicity
- Generic Fredholm alternative-type results for the one dimensional \(p\)-Laplacian.
- Fredholm alternative for the \(p\)-Laplacian in higher dimensions
This page was built for publication: Poincaré inequality and Palais-Smale condition for the \(p\)-Laplacian