Divisor class number one problem for Abelian extensions over rational function fields
From MaRDI portal
Publication:876331
DOI10.1016/j.jalgebra.2003.02.006zbMath1183.11072OpenAlexW1995521094MaRDI QIDQ876331
Publication date: 18 April 2007
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2003.02.006
Arithmetic theory of algebraic function fields (11R58) Cyclotomic function fields (class groups, Bernoulli objects, etc.) (11R60)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Algebraic function fields and codes
- Cyclotomic function fields with divisor class number one
- The Hilbert class field in function fields
- On the class group problem for function fields
- Class number one problem for imaginary function fields: the cyclic prime power case
- Class number relation between type \((l,l, \dots,l)\) function fields over \(\mathbb{F}_ q (T)\) and their subfields
- On unique factorization in certain rings of algebraic functions
- Class numbers of cyclotomic function fields
- Explicit Class Field Theory for Rational Function Fields
- The Determination of the Imaginary Abelian Number Fields with Class Number One
- Cyclotomic function fields with ideal class number one