On non-commutative twisting in étale and motivic cohomology
From MaRDI portal
Publication:877541
DOI10.5802/aif.2212zbMath1204.11169arXivmath/0404263OpenAlexW1494164701MaRDI QIDQ877541
Publication date: 24 April 2007
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0404263
Galois theory (11R32) Iwasawa theory (11R23) (K)-theory of global fields (11R70) Motivic cohomology; motivic homotopy theory (14F42)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- p-adic K-theory of elliptic curves
- Motivic cohomology over Dedekind rings
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- Riemann-Roch theorems for higher algebraic K-theory
- Iwasawa theory and \(p\)-adic Hodge theory
- Classical motivic polylogarithm according to Beilinson and Deligne
- Degeneration of \(l\)-adic Eisenstein classes and of the elliptic polylog
- Galois Cohomology
- A cup product in the Galois cohomology of number fields
- \(K\)-theory of semi-local rings with finite coefficients and étale cohomology
- Fine Selmer groups of elliptic curves over \(p\)-adic Lie extensions
- Motivic cohomology with \(\mathbb Z/2\)-coefficients
- \(p\)-adic analytic groups
- Opérations En K-Théorie Algébrique
- Algebraic and Etale K-Theory
- Algebraic $K$-theory and etale cohomology
- The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky
- The Tamagawa number conjecture for CM elliptic curves
- \(\mathbb{A}^1\)-homotopy theory of schemes
This page was built for publication: On non-commutative twisting in étale and motivic cohomology