Binet-Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes
DOI10.1007/s11263-006-9352-0zbMath1477.68433OpenAlexW1992666150MaRDI QIDQ878271
Alexander J. Smola, René Victor Valqui Vidal, S. V. N. Vishwanathan
Publication date: 26 April 2007
Published in: International Journal of Computer Vision (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/1885/28960
dynamical systemsreproducing kernel Hilbert spaceskernel methodsSylvester equationBinet-Cauchy theoremARMA modelsdynamic texturesdynamic scenes
Learning and adaptive systems in artificial intelligence (68T05) Machine vision and scene understanding (68T45) Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces) (47B32)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- From time series to linear system. I: Finite dimensional linear time invariant systems
- From time series to linear system, II. Exact modelling
- From time series to linear system, III: Approximate modelling
- Subspace angles between ARMA models
- Dynamic textures
- A metric for ARMA processes
- 10.1162/153244303768966085
- Adaptive control of linearizable systems
- Numerical Optimization
- Solution of the Sylvester matrix equation AXB T + CXD T = E
- A PAC-Bayesian margin bound for linear classifiers
- 10.1162/1532443041827934
- Learning Theory and Kernel Machines
- Learning Theory and Kernel Machines
- Learning Theory and Kernel Machines
- On compound permutation matrices