Sublinear functional calculus in homogeneous Besov spaces
From MaRDI portal
Publication:879636
DOI10.4171/RMI/472zbMath1142.46014OpenAlexW1985941130MaRDI QIDQ879636
Publication date: 14 May 2007
Published in: Revista Matemática Iberoamericana (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.rmi/1161871354
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Particular nonlinear operators (superposition, Hammerstein, Nemytski?, Uryson, etc.) (47H30)
Related Items
Paralinearization of the Muskat equation and application to the Cauchy problem ⋮ Global well-posedness for the three dimensional Muskat problem in the critical Sobolev space ⋮ Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces ⋮ Realization of homogeneous Triebel - Lizorkin spaces with $p=\infty $ and characterizations via differences ⋮ Composition operators on Besov algebras ⋮ Composition operators on Lizorkin-Triebel spaces ⋮ A necessary condition for composition in Besov spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Fonctions qui opèrent sur les espaces de Besov et de Triebel. (Functions which operate on Besov and Triebel spaces.)
- Superposition operators and functions of bounded \(p\)-variation
- Réalisations des espaces de Besov homogènes. (Realization of homogeneous Besov spaces)
- Fonctions qui opèrent sur les espaces de Sobolev. (Functions that operate on Sobolev spaces)
- Functional calculus in fractional Sobolev spaces
- Superposition and chain rule for bounded Hessian functions
- Functional calculus in certainLizorkin-Triebel spaces
- Functions which operate on Besov spaces
- Wavelets and Besov spaces
- Functional Calculus in Hölder-Zygmund Spaces
- Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
- On the Spaces of T<scp>riebel‐</scp>L<scp>izorkin</scp> Type: Pointwise Multipliers and Spaces on Domains
- On the regularity of the positive part of functions