Bethe ansatz and inverse scattering transform in a periodic box-ball system
DOI10.1016/j.nuclphysb.2006.04.003zbMath1178.82030arXivmath/0602481OpenAlexW2035094322MaRDI QIDQ879856
Atsuo Kuniba, A. Takenouchi, Taichiro Takagi
Publication date: 10 May 2007
Published in: Nuclear Physics. B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0602481
Quantum groups (quantized enveloping algebras) and related deformations (17B37) Exactly solvable models; Bethe ansatz (82B23) Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics (82B20) Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems (37K15)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Inverse scattering method for a soliton cellular automaton
- The Bethe Ansatz and the combinatorics of Young tableaux
- Kostka polynomials and energy functions in solvable lattice models
- Crystal bases of modified quantized enveloping algebra
- A bijection between Littlewood-Richardson tableaux and rigged configurations
- Analytic Bethe ansatz for fundamental representations of Yangians
- The AM(1) automata related to crystals of symmetric tensors
- Bethe ansatz atq= 0 and periodic box–ball systems
- The inverse scattering transform: Semi-infinite interval
- NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES
- AFFINE CRYSTALS AND VERTEX MODELS
- On a periodic soliton cellular automaton
- Fundamental cycle of a periodic box ball system
- ENERGY FUNCTIONS IN BOX BALL SYSTEMS
- Method for Solving the Korteweg-deVries Equation
- Fundamental cycle of a periodic box–ball system and solvable lattice models
This page was built for publication: Bethe ansatz and inverse scattering transform in a periodic box-ball system