Continued fractions, special values of the double sine function, and Stark units over real quadratic fields
From MaRDI portal
Publication:880055
DOI10.1016/j.jnt.2006.09.011zbMath1150.11041OpenAlexW1967491534MaRDI QIDQ880055
Publication date: 10 May 2007
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2006.09.011
quadratic fieldsclass field theorydouble sine functionStark's conjecturezeta functions of number fields
Quadratic extensions (11R11) Class field theory (11R37) Zeta functions and (L)-functions of number fields (11R42)
Related Items (4)
On Shintani's ray class invariant for totally real number fields ⋮ Explicit computation of Gross-Stark units over real quadratic fields ⋮ On \(p\)-adic multiple zeta and log gamma functions ⋮ A two-variable generalization of the Kummer-Malmstén formula for the logarithm of the double gamma and double sine functions
Uses Software
Cites Work
- Two cases of Stark's conjecture
- Über die Werte der Dedekindschen Zetafunktion
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Brumer elements over a real quadratic base field
- \(L\)-functions at \(s=1\). IV: First derivatives at \(s=0\)
- Generalized eta-functions and certain ray class invariants of real quadratic fields
- \(L\)-functions at \(s=1\). III: Totally real fields and Hilbert's twelfth problem
- On certain ray class invariants of real quadratic fields
- Stark's conjecture in multi-quadratic extensions, revisited.
- Hilbert’s twelfth problem and 𝐿-series
- Computing Stark units for totally real cubic fields
- Multiple sine functions
- Stark's conjecture over complex cubic number fields
- Computing the Hilbert class field of real quadratic fields
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Continued fractions, special values of the double sine function, and Stark units over real quadratic fields