On the equation \(y^2=x(x - 2^m)(x+q - 2^m)\)
From MaRDI portal
Publication:880062
DOI10.1016/j.jnt.2006.09.005zbMath1117.11032OpenAlexW1975414132MaRDI QIDQ880062
Andrzej Dąbrowski, Małgorzata Wieczorek
Publication date: 10 May 2007
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2006.09.005
Rational points (14G05) Elliptic curves over global fields (11G05) Curves over finite and local fields (11G20) Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Primes (11A41)
Related Items (6)
On several families of elliptic curves with arbitrary large Selmer groups ⋮ Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$ ⋮ On the proportion of rank 0 twists of elliptic curves ⋮ ON TWISTS OF THE FERMAT CUBIC x3 + y3 = 2 ⋮ ON POSITIVE PROPORTION OF RANK-ZERO TWISTS OF ELLIPTIC CURVES OVER ⋮ Integral points on elliptic curves associated with generalized twin primes
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The canonical height and integral points on elliptic curves
- Non-vanishing of quadratic twists of modular \(L\)-functions
- Mordell-Weil ranks of quadratic twists of pairs of elliptic curves.
- Integral points in arithmetic progression on \(y^2= x(x^2-n^2)\)
- Explicit 4-descents on an elliptic curve
- Sur certaines hypothèses concernant les nombres premiers
- Signes locaux des courbes elliptiques en 2 et 3
- Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich
- Computing Special Values of MotivicL-Functions
- The non-vanishing of central values of automorphic \(L\)-functions and Landau-Siegel zeros
This page was built for publication: On the equation \(y^2=x(x - 2^m)(x+q - 2^m)\)