On the existence of phase transition for the 1D \(p\)-adic countable state Potts model
From MaRDI portal
Publication:887503
DOI10.1134/S0001434615070305zbMath1331.82016MaRDI QIDQ887503
Publication date: 26 October 2015
Published in: Mathematical Notes (Search for Journal in Brave)
Trees (05C05) Continuous-time Markov processes on general state spaces (60J25) Phase transitions (general) in equilibrium statistical mechanics (82B26) Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics (82B20)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the existence of generalized Gibbs measures for the one-dimensional \(p\)-adic countable state Potts model
- On Gibbs measures of \(p\)-adic Potts model on the Cayley tree.
- A dynamical system approach to phase transitions for \(p\)-adic Potts model on the Cayley tree of order two
- On \(P\)-adic \(\lambda\)-model on the Cayley tree. II: Phase transitions
- \(p\)-adic valued probability measures
- On P-adic λ-model on the Cayley tree
- Onp-adic Gibbs measures of the countable state Potts model on the Cayley tree
This page was built for publication: On the existence of phase transition for the 1D \(p\)-adic countable state Potts model