Strange duality for height zero moduli spaces of sheaves on \(\mathbb{P}^{2}\)
From MaRDI portal
Publication:887906
DOI10.1307/mmj/1441116659zbMath1359.14038OpenAlexW2177741992MaRDI QIDQ887906
Publication date: 3 November 2015
Published in: Michigan Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.mmj/1441116659
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (5)
A note on strange duality for holomorphic triples on a projective line ⋮ Le Potier's strange duality, quot schemes, and multiple point formulas for del Pezzo surfaces ⋮ Strange duality on \(\mathbb{P}^2\) via quiver representations ⋮ Birational models of moduli spaces of coherent sheaves on the projective plane ⋮ SEMISTABLE SHEAVES WITH SYMMETRIC ON A QUADRIC SURFACE
Cites Work
- Generic strange duality for \(K3\) surfaces
- Deformation of rank 2 quasi-bundles and some strange dualities for rational surfaces
- Sheaves on abelian surfaces and strange duality
- Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur \({\mathbb{P}}_ 2({\mathbb{C}})\)
- Factorisation of generalised theta functions. I
- Conformal blocks and generalized theta functions
- Sections du fibré déterminant sur l'espace de modules des faisceaux semi-stables de rang 2 sur le plan projectif. (Sections of the determinant bundle on the moduli space of rank 2 semi-stable sheaves on the projective plane)
- On the strange duality conjecture for abelian surfaces
- The effective cone of the moduli space of sheaves on the plane
- Effective divisors on the Hilbert scheme of points in the plane and interpolation for stable bundles
- Fibrés stables et fibrés exceptionnels sur $\mathbb{P}_2$
- MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS
- Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients
- Unnamed Item
This page was built for publication: Strange duality for height zero moduli spaces of sheaves on \(\mathbb{P}^{2}\)