A hierarchical multi-unidimensional IRT approach for analyzing sparse, multi-group data for integrative data analysis
From MaRDI portal
Publication:888041
DOI10.1007/s11336-014-9420-2zbMath1323.62114OpenAlexW2049376076WikidataQ30855850 ScholiaQ30855850MaRDI QIDQ888041
Su-Young Kim, Anne E. Ray, Yang Jiao, Helene R. White, Eun-Young Mun, Jimmy de la Torre, Yan Huo
Publication date: 4 November 2015
Published in: Psychometrika (Search for Journal in Brave)
Full work available at URL: http://europepmc.org/articles/pmc4379139
Related Items (1)
Uses Software
Cites Work
- Randomization-based inference about latent variables from complex samples
- The role of secondary covariates when estimating latent trait population distributions
- Multidimensional item reponse theory.
- Inference from iterative simulation using multiple sequences
- Posterior predictive \(p\)-values
- Bayesian estimation of a multilevel IRT model using Gibbs sampling
- MCMC estimation and some model-fit analysis of multidimensional IRT models
- Parameter expansion for sampling a correlation matrix: an efficient GPX-RPMH algorithm
- Efficient Matrix Sampling Instruments for Correlated Latent Traits: Examples from the National Assessment of Educational Progress
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A hierarchical multi-unidimensional IRT approach for analyzing sparse, multi-group data for integrative data analysis