The noncommutative \(H^{(r,s)}_{p}({\mathcal A};\ell_{\infty})\) and \(H_{p}({\mathcal A};\ell_{1})\) spaces
From MaRDI portal
Publication:891938
DOI10.1007/s11117-015-0332-xzbMath1356.46050OpenAlexW2460667639MaRDI QIDQ891938
Publication date: 18 November 2015
Published in: Positivity (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11117-015-0332-x
von Neumann algebracomplex interpolationsubdiagonal algebrasRiesz factorizationvector-valued noncommutative Hardy spaces
Related Items
Noncommutative vector-valued symmetric Hardy spaces ⋮ Conditional expectation on non-commutative \(H^{(r,s)}_p(\mathcal{A};\ell_{\infty})\) and \(H_p(\mathcal{A};\ell_1)\) spaces: semifinite case ⋮ Non-commutative HE(A;l∞) and HE(A;l1) spaces ⋮ On some inequalities of τ-measurable operators
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some remarks on Banach spaces in which martingale difference sequences are unconditional
- Interpolation between \(H^ p\) spaces and non-commutative generalizations. I
- Characterizations of noncommutative \(H^\infty\)
- Convexités uniformes et inégalités de martingales. (Uniform convexity and inequalities for martingales)
- Non-commutative martingale inequalities
- Maximal theorems of Menchoff--Rademacher type in non-commutative \(L_{q}\)-spaces.
- Duality for symmetric Hardy spaces of noncommutative martingales
- Noncommutative maximal ergodic theorems
- Applications of the Fuglede-Kadison determinant: Szegö’s theorem and outers for noncommutative $H^p$
- Riesz and Szeg\"o type factorizations for noncommutative Hardy spaces
- Maximal Subdiagonal Algebras
- A Note on Invariant Subspaces for Finite Maximal Subdiagonal Algebras
- Doobs inequality for non-commutative martingales
- On martingales with values in a complex Banach space
- Analyticity in Operator Algebras