On linear independence of integer shifts of compactly supported distributions
DOI10.1016/j.jat.2015.08.008zbMath1331.41041OpenAlexW1593919095MaRDI QIDQ892172
Publication date: 18 November 2015
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jat.2015.08.008
polynomial ringscompactly supported distributionslinear independenceHilbert Nullstellensatzinteger shifts of functions
Nontrigonometric harmonic analysis involving wavelets and other special systems (42C40) Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42B10) Multidimensional problems (41A63) Approximation by other special function classes (41A30)
Related Items (1)
Cites Work
- B-splines from parallelepipeds
- Linear independence of translates of a box spline
- A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution
- Vector cascade algorithms and refinable function vectors in Sobolev spaces
- On the Solution of Certain Systems of Partial Difference Equations and Linear Dependence of Translates of Box Splines
- Ten Lectures on Wavelets
- Global Linear Independence and Finitely Supported Dual Basis
- On linear independence for integer translates of a finite number of functions
- On the Integer Translates of a Compactly Supported Function: Dual Bases and Linear Projectors
- Unnamed Item
- Unnamed Item
This page was built for publication: On linear independence of integer shifts of compactly supported distributions