Improving estimation efficiency in quantile regression with longitudinal data
From MaRDI portal
Publication:894786
DOI10.1016/J.JSPI.2015.03.008zbMath1326.62096OpenAlexW2050533324MaRDI QIDQ894786
Yanlin Tang, Jingru Li, Wei-Min Qian, Yin-Feng Wang
Publication date: 23 November 2015
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jspi.2015.03.008
Nonparametric regression and quantile regression (62G08) Time series, auto-correlation, regression, etc. in statistics (GARCH) (62M10)
Related Items (10)
A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data ⋮ Composite quantile regression for correlated data ⋮ Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data ⋮ Composite quantile estimation for kink model with longitudinal data ⋮ Improved multiple quantile regression estimation with nonignorable dropouts ⋮ Efficient estimation in the partially linear quantile regression model for longitudinal data ⋮ Multiple quantile regression analysis of longitudinal data: heteroscedasticity and efficient estimation ⋮ Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data ⋮ Weighted quantile regression in varying-coefficient model with longitudinal data ⋮ Improved kth power expectile regression with nonignorable dropouts
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Improving generalised estimating equations using quadratic inference functions
- Bayesian empirical likelihood for quantile regression
- Empirical likelihood for quantile regression models with longitudinal data
- Smoothing combined estimating equations in quantile regression for longitudinal data
- Composite quantile regression and the oracle model selection theory
- Empirical likelihood and general estimating equations
- Limiting distributions for \(L_1\) regression estimators under general conditions
- Quantile regression for longitudinal data
- Bayesian Latent Variable Models for Median Regression on Multiple Outcomes
- Empirical likelihood and quantile regression in longitudinal data analysis
- Quasi-Likelihood for Median Regression Models
- Semiparametric Approach to a Random Effects Quantile Regression Model
- Flexible Bayesian quantile regression for independent and clustered data
- Optimally combined estimation for tail quantile regression
- Regression Quantiles
- Marginal Models for Longitudinal Continuous Proportional Data
- Block empirical likelihood for longitudinal partially linear regression models
This page was built for publication: Improving estimation efficiency in quantile regression with longitudinal data