Constacyclic codes of length \(2p^{s}\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m}\)

From MaRDI portal
Publication:897327

DOI10.1016/j.ffa.2015.09.006zbMath1338.94103OpenAlexW2512704848MaRDI QIDQ897327

Bocong Chen, Liqi Wang, Hai Quang Dinh, Hong-wei Liu

Publication date: 17 December 2015

Published in: Finite Fields and their Applications (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/j.ffa.2015.09.006




Related Items (43)

Duality of constacyclic codes of prime power length over the finite non-commutative chain ring \(\frac{ \mathbb{F}_{p^m} [ u , \theta }{ \langle u^2 \rangle} \)] ⋮ Type 2 constacyclic codes over \(\mathbb{F}_{2^m} [u \slash \langle u^3 \rangle\) of oddly even length] ⋮ RT distances and Hamming distances of constacyclic codes of length \(8p^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\)Self-dual constacyclic codes of length \(2^s\) over the ring \(\mathbb{F}_{2^m}[u,v/\langle u^2, v^2, uv-vu \rangle \)] ⋮ A class of constacyclic codes over \({\mathbb{F}}_{p^m}[u/\langle u^2\rangle\)] ⋮ Negacyclic codes of prime power length over the finite non-commutative chain ring 𝔽pm[u,𝜃 〈u2〉] ⋮ Constacyclic codes over \(\mathbb{F}_{p^m}[u_1, u_2, \cdots, u_k/\langle u_i^2 = u_i, u_i u_j = u_j u_i \rangle\)] ⋮ Repeated-root constacyclic codes of arbitrary lengths over the Galois ring GR(p2,m)Constacyclic codes of length \(8p^s\) over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\)On \(\sigma \)-self-orthogonal constacyclic codes over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\)On normalized generating sets for GQC codes over \(\mathbb{Z}_2\)An explicit expression for Euclidean self-dual cyclic codes over \(\mathbb{F}_{2^m} + u \mathbb{F}_{2^m}\) of length \(2^s\)An efficient method to construct self-dual cyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m} \)Unnamed ItemCyclic and negacyclic codes of length 4ps over 𝔽pm + u𝔽pmOn constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m} [ u , v \slash \langle u^2 , v^2 , u v - v u \rangle \)] ⋮ NEGACYCLIC CODES OF LENGTH 8p s OVER F p m + uF p mOn self-dual constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m}\)On symbol-pair distances of repeated-root constacyclic codes of length \(2p^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\) and MDS symbol-pair codesOn Hamming distance distributions of repeated-root constacyclic codes of length \(3p^s\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m}\)An explicit representation and enumeration for self-dual cyclic codes over \(\mathbb{F}_{2^m}+u\mathbb{F}_{2^m}\) of length \(2^s\)Skew constacyclic codes of lengths \(p^s\) and \(2p^s\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m} \)All \(\alpha+u\beta\)-constacyclic codes of length \(np^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\)A note on: ``Hamming distance of repeated-root constacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\)On a class of constacyclic codes of length 4ps over 𝔽pm + u𝔽pmOn (α + uβ)-constacyclic codes of length 4ps over 𝔽pm + u𝔽pm∗On Cyclic and Negacyclic Codes of Length 8p<sup>s</sup> Over Fp<sup>m</sup> + uFp<sup>m</sup>Unnamed ItemNon-invertible-element constacyclic codes over finite PIRsOn constacyclic codes of length \(4p^s\) over \(\mathbb{F}_{p^m} +u\mathbb{F}_{p^m}\)A class of constacyclic codes from group algebrasRT distance and weight distributions of Type 1 constacyclic codes of length 4ps over Fpm[u] ⋮ Complete classification of repeated-root \(\sigma\)-constacyclic codes of prime power length over \(\mathbb{F}_{p^m} [ u \slash \langle u^3 \rangle \)] ⋮ Constacyclic codes of length \(np^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\)On the depth spectrum of repeated-root constacyclic codes over finite chain ringsRepeated-root constacyclic codes of length \(2p^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+u^2\mathbb{F}_{p^m} \)Construction and enumeration for self-dual cyclic codes of even length over \(\mathbb{F}_{2^m} + u \mathbb{F}_{2^m} \)Unnamed ItemSelf-reciprocal and self-conjugate-reciprocal irreducible factors of \(x^n - \lambda\) and their applicationsHamming distance of repeated-root constacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m} \)Non-binary quantum codes from constacyclic codes over \(\mathbb{F}_q[u_1, u_2,\dots,u_k/\langle u_i^3 = u_i, u_i u_j = u_j u_i \rangle\)] ⋮ Explicit constructions of cyclic and negacyclic codes of length 3ps over 𝔽pm + u𝔽pmConstruction of optimal codes from a class of constacyclic codes



Cites Work


This page was built for publication: Constacyclic codes of length \(2p^{s}\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m}\)