Gotzmann regularity for globally generated coherent sheaves
From MaRDI portal
Publication:898194
DOI10.1016/J.JPAA.2015.09.019zbMath1338.13028arXiv1410.8612OpenAlexW1854920657MaRDI QIDQ898194
Publication date: 8 December 2015
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1410.8612
coherent sheafsecond Chern class\(d\)-th Macaulay representationGotzmann persistence theoremGotzmann regularity theoremMacaulay bound
Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series (13D40) Parametrization (Chow and Hilbert schemes) (14C05)
Related Items (3)
On degenerate sections of vector bundles ⋮ Gotzmann's persistence theorem for finite modules ⋮ Computing quot schemes via marked bases over quasi-stable modules
Cites Work
- Unnamed Item
- Virtual intersections on the Quot scheme and Vafa-Intriligator formulas
- Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes
- Extremal properties of Hilbert functions
- Power sums, Gorenstein algebras, and determinantal loci. With an appendix `The Gotzmann theorems and the Hilbert scheme' by Anthony Iarrobino and Steven L. Kleiman
- Éléments de géométrie algébrique. III: Étude cohomologique des faisceaux cohérents. (Séconde partie). Rédigé avec la colloboration de J. Dieudonné
- A generalization of macaulay's theorem
- Rank two globally generated vector bundles with c_1 \leq 5
- Computational methods of commutative algebra and algebraic geometry. With chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman
This page was built for publication: Gotzmann regularity for globally generated coherent sheaves