Discontinuous dynamic equations on time scales
DOI10.1007/S12215-015-0206-XzbMath1334.34199OpenAlexW417480073MaRDI QIDQ903062
Publication date: 4 January 2016
Published in: Rendiconti del Circolo Matemàtico di Palermo. Serie II (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/11449/172196
generalized solutiontime scaleFilippov solutionCarathéodory solutionEuler solutiondiscontinuous equationHermes solutionKrasovskii solution
Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations (34A12) Discontinuous ordinary differential equations (34A36) Dynamic equations on time scales or measure chains (34N05)
Related Items (4)
Cites Work
- Existence theorems for first-order equations on time scales with \(\Delta \)-Carathéodory functions
- Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling
- Discontinuous differential equations. I
- Integration on time scales.
- Absolute continuity and existence of solutions to dynamic inclusions in time scales
- Expression of the Lebesgue \(\Delta\)-integral on time scales as a usual Lebesgue integral; application to the calculus of \(\Delta\)-antiderivatives
- Filippov's selection theorem and the existence of solutions for optimal control problems in time scales
- First and second order linear dynamic equations on time scales
- Boundedness and Uniqueness of Solutions to Dynamic Equations on Time Scales
- Basics of Riemann Delta and Nabla Integration on Time Scales
- Criterions for absolute continuity on time scales
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Discontinuous dynamic equations on time scales