Inequalities for sums of independent random variables in Lorentz spaces
From MaRDI portal
Publication:908263
DOI10.1216/RMJ-2015-45-5-1631zbMath1342.46033MaRDI QIDQ908263
Publication date: 4 February 2016
Published in: Rocky Mountain Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.rmjm/1453817257
interpolationLorentz spacerandom variableLorentz-Zygmund spaceRosenthal inequalityKhinchin inequality
Sums of independent random variables; random walks (60G50) Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30)
Cites Work
- Unnamed Item
- Unnamed Item
- An extension of Rosenthal's inequality
- Compact and strictly singular operators on certain function spaces
- Sums of independent random variables in rearrangement invariant function spaces
- Weighted Lorentz spaces and the Hardy operator
- On the subspaces of \(L^p\) \((p > 2)\) spanned by sequences of independent random variables
- Spaces \(\Lambda_\alpha\)(X) and interpolation
- Interpolation with a parameter function.
- A function parameter in connection with interpolation of Banach spaces.
- Inequalities for Sums of Independent Random Variables
This page was built for publication: Inequalities for sums of independent random variables in Lorentz spaces