Applications holomorphes propres continues de domaines strictement pseudoconvexes de \({\mathbb{C}}^ n\) dans la boule unité de \({\mathbb{C}}^{n+1}\). (On the extension of proper holomorphic mappings from strictly pseudoconvex domains in \({\mathbb{C}}^
From MaRDI portal
Publication:909071
DOI10.1215/S0012-7094-90-06003-XzbMath0694.32010OpenAlexW1528845078MaRDI QIDQ909071
Publication date: 1990
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1215/s0012-7094-90-06003-x
Related Items (11)
On the \(\mathcal{C}^\infty\) regularity of CR mappings of positive codimension ⋮ Proper maps which are Lipschitz \(\alpha\) up to the boundary ⋮ Boundary behavior of rational proper maps ⋮ Proper holomorphic maps in Euclidean spaces avoiding unbounded convex sets ⋮ Extension of holomorphic maps between real hypersurfaces of different dimension ⋮ Continuous Proper Holomorphic Maps into Bounded Domains ⋮ Analytic sets and extension of holomorphic maps of positive codimension ⋮ Immersions and Embeddings in Domains of Holomorphy ⋮ Proper holomorphic maps from weakly pseudoconvex domains ⋮ Unnamed Item ⋮ Automorphisms and holomorphic mappings of standard CR-manifolds and Siegel domains
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A reflection principle with applications to proper holomorphic mappings
- A reflection principle for proper holomorphic mappings of strongly pseudoconvex domains and applications
- Maps from the two-ball to the three-ball
- Sur le plongement des domaines faiblement pseudoconvexes dans des domaines convexes
- Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls
- Boundary interpolation by proper holomorphic maps
- Extensions and selections in subspaces of C(K)
- Fonctions holomorphes bornées sur la boule unite de \(C^ n\).
- On mapping an n-ball into an (n+1)-ball in complex space
- Ensembles pics pour \(A^\infty(D)\)
- Proper holomorphic mappings from strongly pseudoconvex domains in $\mathsf{C}^2$ to the unit polydisc in $\mathsf{C}^2$.
- Embedding Strictly Pseudoconvex Domains Into Balls
- Interpolation submanifolds of pseudoconvex manifolds
This page was built for publication: Applications holomorphes propres continues de domaines strictement pseudoconvexes de \({\mathbb{C}}^ n\) dans la boule unité de \({\mathbb{C}}^{n+1}\). (On the extension of proper holomorphic mappings from strictly pseudoconvex domains in \({\mathbb{C}}^