Itô's lemma without non-anticipatory conditions
From MaRDI portal
Publication:910101
DOI10.1007/BF01193581zbMath0695.60054WikidataQ124817919 ScholiaQ124817919MaRDI QIDQ910101
Joachim Asch, Juergen Potthoff
Publication date: 1991
Published in: Probability Theory and Related Fields (Search for Journal in Brave)
Related Items
Forward, backward and symmetric stochastic integration ⋮ Discrete-time approximations of stochastic delay equations: the Milstein scheme. ⋮ ANTICIPATIVE STOCHASTIC INTEGRALS EQUATIONS DRIVEN BY SEMIMARTINGALES ⋮ The pressure equation for fluid flow in a stochastic medium ⋮ The generalized covariation process and Itô formula ⋮ Itô's lemma without non-anticipatory conditions ⋮ MINIMAL VARIANCE HEDGING FOR INSIDER TRADING ⋮ Wiener distributions and white noise analysis ⋮ Stochastic integrals for nonprevisible, multiparameter processes
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Brownian functionals and applications
- Itô's lemma without non-anticipatory conditions
- Sobolev spaces of Wiener functionals and Malliavin's calculus
- Generalized stochastic integrals and the Malliavin calculus
- A two-sided stochastic integral and its calculus
- Stochastic calculus with anticipating integrands
- A generalization of Itô's lemma
- White noise approach to stochastic integration
- Dirichlet forms and white noise analysis
- Calculus on Gaussian white noise. I
- Calculus on Gaussian white noise. II
- L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel
- An extension of the stochastic integral
- Constructive quantum field theory. The 1973 'Ettore Majorana' international school of mathematical physics
- Malliavin's calculus and stochastic integral representations of functional of diffusion processes†
- On Meyer’s equivalence
- Littlewood-Paley theory on Gaussian spaces