Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions
From MaRDI portal
Publication:910573
DOI10.1007/BF01052975zbMath0696.35084MaRDI QIDQ910573
Publication date: 1989
Published in: Archive for Rational Mechanics and Analysis (Search for Journal in Brave)
Reaction-diffusion equations (35K57) A priori estimates in context of PDEs (35B45) Qualitative properties of solutions to partial differential equations (35B99)
Related Items (11)
Cross-diffusion systems with non-zero flux and moving boundary conditions ⋮ Unnamed Item ⋮ Homogenization of Biomechanical Models for Plant Tissues ⋮ Global existence for a class of triangular parabolic systems on domains of arbitrary dimension ⋮ Global existence for a class of strongly coupled parabolic systems ⋮ Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics ⋮ Invariant regions for quasilinear reaction-diffusion systems and applications to a two population model ⋮ Constrained semilinear elliptic systems on \(\mathbb{R}^N\) ⋮ Hölder regularity for certain strongly coupled parabolic systems ⋮ Multiscale Analysis of Nutrient Uptake by Plant Roots with Sparse Distribution of Root Hairs: Nonstandard Scaling ⋮ Positively invariant regions for strongly coupled reaction-diffusion systems with a balance law
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Über die Invarianz einer konvexen Menge in bezug auf Systeme von gewöhnlichen, parabolischen und elliptischen Differentialgleichungen
- Invariant sets for systems of partial differential equations I. Parabolic equations
- Invariant sets and existence theorems for semilinear parabolic and elliptic systems
- Comparison and Stability Theorems for Reaction-Diffusion Systems
- A comparison technique for systems of reaction-diffusion equations
- Sur un système non linéaire d'inégalités différentielles paraboliques dans un domaine non borné
This page was built for publication: Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions