\(L_ p\)-error estimates for positive linear operators using the second- order \(\tau\)-modulus
From MaRDI portal
Publication:910639
DOI10.1007/BF01906850zbMath0696.41018OpenAlexW112509471MaRDI QIDQ910639
Publication date: 1988
Published in: Analysis Mathematica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01906850
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On functions with bounded \(n\)-th differences
- Quantitative estimates for \(L_ p\) approximation with positive linear operators
- The \(L_ 1\) norm of the approximation error for Bernstein-type polynomials
- Quantitative Korovkin Theorems for Positive Linear Operators on L p - Spaces
- On multipliers preserving convergence of trigonometric series almost everywhere
- Güteabschätzungen für den Kantorovic-Operator in der \(L_1\)-Norm
This page was built for publication: \(L_ p\)-error estimates for positive linear operators using the second- order \(\tau\)-modulus