Conditional bounds and best \(L_{\infty}\)-approximations in probability spaces
From MaRDI portal
Publication:910644
DOI10.1016/0021-9045(89)90128-7zbMath0696.41025OpenAlexW2057836031MaRDI QIDQ910644
Carlos Matrán, Juan Antonio Cuesta
Publication date: 1989
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9045(89)90128-7
random variablesPólya algorithmLebesgue measureisotonic approximationconditional boundsLebesgue-Radon-Nikodym derivatives
Related Items (4)
Some stochastics on monotone functions ⋮ Consistency of \(L_ p\)-best monotone approximations ⋮ On the estimation of monotone uniform approximations ⋮ Strict \(L_{\infty }\) isotonic regression
Cites Work
- Unnamed Item
- Unnamed Item
- The Polya algorithm in \(L_ \infty\) approximation
- Isotonic approximation in \(L_ s\).
- Uniform inequalities for conditional \(p\)-means given \(\sigma\)-lattices
- L//infinity-approximation in probability spaces
- A generalized Radon-Nikodym derivative
- Semi-recorrido condicionado (Expresion asintotica de la r-esperanza condicionada)
- Best approximants in L ? -spaces
- Convergence of L p Approximations as p →∞
- Convergence of Best Best L ∞ -Approximations
- Conditional Expectation Given A $\sigma$-Lattice and Applications
- Asymptotic Behavior of High Order Means
This page was built for publication: Conditional bounds and best \(L_{\infty}\)-approximations in probability spaces