Comparaison des projecteurs de Bergman et Szegö et applications. (Comparison of the Bergman and Szegö projectors, and applications)
From MaRDI portal
Publication:913036
DOI10.1007/BF02387365zbMath0699.32003MaRDI QIDQ913036
Publication date: 1990
Published in: Arkiv för Matematik (Search for Journal in Brave)
(overlinepartial) and (overlinepartial)-Neumann operators (32W05) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25) Pseudoconvex domains (32T99)
Related Items
Comparing the Bergman and the Szegö projections ⋮ Hardy Spaces of Holomorphic Functions for Domains in ℂ n with Minimal Smoothness ⋮ Estimations limites pour la solution canonique de l'équation \({\bar \partial}u=f\). (Limit estimates for the canonical solution of the equation \({\bar \partial}u=f)\) ⋮ Comparing the Bergman and Szegö projections on domains with subelliptic boundary Laplacian ⋮ A parametrix for the \(\overline{\partial}\)-Neumann problem on pseudoconvex domains of finite type ⋮ On Regularity and Irregularity of Certain Holomorphic Singular Integral Operators
Cites Work
- Unnamed Item
- Unnamed Item
- Henkin-Ramirez kernels with weight factors
- Extension dans des classes de Hardy de fonctions holomorphes et estimations de type Mesures de Carleson pour l'équation \(\bar\partial\)
- The Szegö kernel in terms of Cauchy-Fantappie kernels
- Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains
- The Hölder continuity of the Bergman projection and proper holomorphic mappings
- ZEROS OF HOLOMORPHIC FUNCTIONS OF FINITE ORDER AND WEIGHTED ESTIMATES FOR SOLUTIONS OF THE $\bar\partial$-EQUATION
- Valeurs au bord pour les solutions de l'opérateur $d^n$, et caractérisation des zéros des fonctions de la classe de Nevanlinna
- Mesures de Carleson d'ordre $\alpha$ et solutions au bord de l'équation $\overline\partial$
- INTEGRAL REPRESENTATION OF FUNCTIONS IN STRICTLY PSEUDOCONVEX DOMAINS AND APPLICATIONS TO THE $ \overline{\partial}$-PROBLEM
- Boundary Behavior of Holomorphic Functions of Several Complex Variables. (MN-11)