Implementing the Baumslag-Cannonito-Miller polycyclic quotient algorithm
DOI10.1016/S0747-7171(08)80084-3zbMath0703.20029MaRDI QIDQ915859
Publication date: 1990
Published in: Journal of Symbolic Computation (Search for Journal in Brave)
algorithmGröbner basesfinitely presented groupcomputer implementationnilpotent quotientspolycyclic quotients
Symbolic computation and algebraic computation (68W30) Solvable groups, supersolvable groups (20F16) Generators, relations, and presentations of groups (20F05) Word problems, other decision problems, connections with logic and automata (group-theoretic aspects) (20F10) Software, source code, etc. for problems pertaining to group theory (20-04)
Related Items (1)
Uses Software
Cites Work
- Verifying nilpotence
- Towards a soluble quotient algorithm
- A p-adic approach to the computation of Gröbner bases
- Some recognizable properties of solvable groups
- Computable algebra and group embeddings
- Some algorithmic problems for solvable groups
- Hermite Normal Form Computation Using Modulo Determinant Arithmetic
- Algorithm 628
- Constructive Aspects of Noetherian Rings
- Free differential calculus. IV: The quotient groups of the lower central series
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Implementing the Baumslag-Cannonito-Miller polycyclic quotient algorithm