Hermite-Fejér interpolations of higher order. I

From MaRDI portal
Publication:916019

DOI10.1007/BF01950715zbMath0703.41004OpenAlexW2024128244MaRDI QIDQ916019

Péter Vértesi

Publication date: 1989

Published in: Acta Mathematica Hungarica (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/bf01950715




Related Items (22)

Turán type problems on mean convergence. I: Lagrange type interpolationsA theorem of Grünwald-type for Hermite-Fejér interpolation of higher orderHermite-Fejér interpolation of higher order with varying weightsMean convergence of Hermite interpolation revisitedAn analogue of problem 26 of P. TuránHermite and Hermite-Fejér interpolations of higher order. II: Mean convergenceWeighted Hermite-Fejér interpolation on the real line: \(L_{\infty}\) caseOn Hermite-Fejér interpolation of higher orderOn higher order Hermite-Fejér interpolation in weighted \(L_ p\)- metricA survey on mean convergence of interpolatory processesWeighted \(L^ p\) convergence of Hermite interpolation of higher orderCertain unbounded Hermite-Fejér interpolatory polynomial operatorsOn the saturation ofL p w -approximation by (0-q′-q) type Hermite-Fejér interpolating polynomialsConvergence of Hermite and Hermite-Fejér interpolation of higher order for Freud weightsHermite and Hermite–Fejér interpolation for Stieltjes polynomialsHermite-Fejér type interpolation of higher orderOne-sided convergence conditions for Hermite-Fejér interpolation of higher order of Lagrange typeOn the positivity of the fundamental polynomials for generalized Hermite-Fejér interpolation on the Chebyshev nodesDerivatives of integrating functions for orthonormal polynomials with exponential-type weightsOn the order of magnitude of fundamental polynomials of Hermite interpolationThe Fast Implementation of Higher Order Hermite--Fejér InterpolationThe Lebesgue function for generalized Hermite-Fejér interpolation on the Chebyshev nodes



Cites Work


This page was built for publication: Hermite-Fejér interpolations of higher order. I