A characterization of the sharply 3-transitive finite permutation groups
From MaRDI portal
Publication:917682
DOI10.1016/S0195-6698(13)80121-7zbMath0705.20001MaRDI QIDQ917682
Gábor Korchmáros, Arrigo Bonisoli
Publication date: 1990
Published in: European Journal of Combinatorics (Search for Journal in Brave)
permutation groupMinkowski planePGL(2,q)sharply 3-transitive permutation setfractional semilinear transformations
Linear algebraic groups over finite fields (20G40) Minkowski geometries in nonlinear incidence geometry (51B20) Multiply transitive finite groups (20B20)
Related Items
Invertible sharply \(n\)-transitive sets, A construction and characterization of new sharply 3-transitive permutation sets contained in \(P\varGamma L(2,K)\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On sharply k-transitive permutation sets (k\(\geq 3)\)
- Finite Minkowski planes in which every circle-symmetry is an automorphism
- A combinatorial characterization of \(PGL(2,2^q)\)
- Symmetrische Permutationsmengen
- A characterization of classical Minkowski planes over a perfect field of characteristic two
- Eine Bemerkung über endliche Laguerre- und Minkowski-Ebenen
- Central elements in core-free groups
- p-solvable doubly transitive permutation groups
- Finite groups with a split BN-pair of rank 1. I
- A Pascal theorem applied to Minkowski geometry
- Symmetrische Minkowski-Ebenen
- Endliche Gruppen I
- A Theorem on Permutations of a Finite Field