On a geometric property of the normal bundle of surfaces in \({\mathbb{P}}_ 4\)
From MaRDI portal
Publication:919433
DOI10.1007/BF02571361zbMath0707.14038MaRDI QIDQ919433
Publication date: 1991
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/174242
Veronese surfaceampleness of (-1)-twist of the normal bundlecubic scrollrational non-special surface
Vector bundles on surfaces and higher-dimensional varieties, and their moduli (14J60) Rational and unirational varieties (14M20) Special surfaces (14J25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Very ampleness of \(K_ x\otimes {\mathcal L}^{\dim \,{\mathbf{X}}}\) for ample and spanned line bundles \({\mathcal L}\)
- Surfaces rationelles non-spéciales dans \({\mathbb{P}}^ 4\). (Non special rational surfaces in \({\mathbb{P}}^ 4)\)
- Über 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in \({\mathbb{P}}^ 4\) und \({\mathbb{P}}^ 5\)
- Varieties with small dual varieties. I
- Flächen vom Grad 8 im \({\mathbb{P}}^ 4\). (Degree 8 surfaces in \({\mathbb{P}}^ 4)\)
- Vector bundles on complex projective spaces
- Ample vector bundles, Chern classes, and numerical criteria
- Ample vector bundles
- On the Hyperplane Sections of Blow-Ups of Complex Projective Plane
- P-Ample Bundles and Their Chern Classes
This page was built for publication: On a geometric property of the normal bundle of surfaces in \({\mathbb{P}}_ 4\)