Intermediate Jacobians and Chow groups of threefolds with a pencil of del Pezzo surfaces
From MaRDI portal
Publication:920170
DOI10.1007/BF01790341zbMath0708.14030OpenAlexW2083247615MaRDI QIDQ920170
Publication date: 1989
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01790341
threefoldsChow groupintermediate Jacobianexceptional curvespencil of del Pezzo surfacesPrym-Tyurin variety
Parametrization (Chow and Hilbert schemes) (14C05) Picard schemes, higher Jacobians (14K30) Jacobians, Prym varieties (14H40) (3)-folds (14J30)
Related Items
Néron models of intermediate Jacobians associated to moduli spaces, Quartic del Pezzo surfaces over function fields of curves, The uniformization of the moduli space of principally polarized abelian 6-folds, Unnamed Item, Weak Fano threefolds with del Pezzo fibration
Cites Work
- On the Kodaira dimension of minimal threefolds
- Polarized mixed Hodge structures: On irrationality of threefolds via degeneration
- On the Chow group and the intermediate Jacobian of a conic bundle
- Degenerations of rational surfaces with trivial monodromy
- Cohomologie galoisienne. Cours au Collège de France, 1962--1963. Seconde édition.
- Die Auflösung der rationalen Singularitäten holomorpher Abbildungen
- Deformations of compact complex surfaces. II
- Periods of integrals on algebraic manifolds. III: Some global differential-geometric properties of the period mapping
- Théorie de Hodge. II. (Hodge theory. II)
- On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras
- Resolution of singularities of an algebraic variety over a field of characteristic zero. I
- On quasi algebraic closure
- Reduction of the singularities of algebraic three dimensional varieties
- Variétés de Prym et jacobiennes intermédiaires
- Periods of Integrals on Algebraic Manifolds, I. (Construction and Properties of the Modular Varieties)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item