Domaines de \({\mathbb{C}}^ 2\), pseudoconvexes et de type fini ayant un groupe non compact d'automorphismes. (On domains in \({\mathbb{C}}^ 2\), being pseudoconvex and of finite type, with non-compact automorphism group)
From MaRDI portal
Publication:923175
DOI10.5802/aif.1249zbMath0711.32016OpenAlexW2318329932MaRDI QIDQ923175
Gérard Cœuré, François Berteloot
Publication date: 1991
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1991__41_1_77_0
Special families of functions of several complex variables (32A17) Pseudoconvex domains (32T99) Complex spaces with a group of automorphisms (32M99)
Related Items (19)
On the scaling methods by Pinchuk and Frankel ⋮ Rescaling methods in complex analysis ⋮ On proper holomorphic mappings from domains with T-action ⋮ On the existence of parabolic actions in convex domains of ℂ k+1 ⋮ On CR mappings between pseudoconvex hypersurfaces of finite type in \(\mathbb{C}^2\) ⋮ Boundary behavior of the Carathéodory and Kobayashi-Eisenman volume elements ⋮ Bloch principle and estimates of the Kobayashi metric of domains in \(\mathbb{C}^2\) ⋮ Some regularity theorems for CR mappings ⋮ Iterated automorphism orbits of bounded convex domains in \(\mathbb{C}^n\) ⋮ Domains in complex surfaces with non-compact automorphism groups ⋮ Some aspects of the Kobayashi and Carathéodory metrics on pseudoconvex domains ⋮ Some aspects of analysis on almost complex manifolds with boundary ⋮ The impact of the theorem of Bun Wong and Rosay ⋮ Fefferman's mapping theorem on almost complex manifolds in complex dimension two ⋮ Characterization of the Hilbert ball by its automorphism group ⋮ Proper pseudoholomorphic maps between strictly pseudoconvex regions ⋮ Domains with non-compact automorphism group: a survey ⋮ Characterization of pseudoconvex domains of finite type with locally diagonalizable Levi form by their automorphism groups ⋮ Domains in \({\mathbb{C}}^{n+1}\) with noncompact automorphism group
Cites Work
- Unnamed Item
- Unnamed Item
- Une classe de domaines pseudoconvexes. (A class of pseudoconvex domains)
- Estimates of invariant metrics on pseudoconvex domains of dimension two
- Sur une caractérisation de la boule parmi les domaines de \(\mathbb{C}^n\) par son groupe d'automorphismes
- Construction of p.s.h. functions on weakly pseudoconvex domains
- Stetige streng pseudokonvexe Funktionen
- DOMAINS IN $ \mathbf{C}^2$ WITH NONCOMPACT HOLOMORPHIC AUTOMORPHISM GROUPS
This page was built for publication: Domaines de \({\mathbb{C}}^ 2\), pseudoconvexes et de type fini ayant un groupe non compact d'automorphismes. (On domains in \({\mathbb{C}}^ 2\), being pseudoconvex and of finite type, with non-compact automorphism group)