Covering numbers of manifolds and critical points of a Morse function
From MaRDI portal
Publication:923436
DOI10.1007/BF02801465zbMath0711.57021MaRDI QIDQ923436
Publication date: 1990
Published in: Israel Journal of Mathematics (Search for Journal in Brave)
critical points4-manifoldsLyusternik-Shnirel'man categorycovering numbershandle-decompositionMorse-numberMorse-theoryPoincaré-conjecture in dimension 3
Lyusternik-Shnirel'man category of a space, topological complexity à la Farber, topological robotics (topological aspects) (55M30) Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces (58E05) Critical points and critical submanifolds in differential topology (57R70)
Cites Work
- Minimal coverings of manifolds with balls
- On the structure of 5-manifolds
- The ball coverings of manifolds
- Lusternik-Schnirelmann category and strong category
- Spherical modifications and coverings by cells
- The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelman category
- Morse Theory. (AM-51)
- Four-dimensional topology: an introduction
- Covering three-manifolds with open cells
- On the Lusternik-Schnirelmann category
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item