A cohomological study of the 2-primary part of \(K_2{\mathcal O})\)
From MaRDI portal
Publication:923624
DOI10.1007/BF01054449zbMath0712.11070MaRDI QIDQ923624
Publication date: 1990
Published in: \(K\)-Theory (Search for Journal in Brave)
Iwasawa theory (11R23) (K)-theory of global fields (11R70) Galois cohomology (11R34) Steinberg groups and (K_2) (19C99)
Related Items (3)
Galois descent and \(K_ 2\) of number fields ⋮ Reflexion theorems ⋮ 8-ranks of \(K_2\) of rings of integers in quadratic number fields
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Class fields of abelian extensions of \(\mathbb Q\)
- Ein Analogon zur Fundamentalgruppe einer Riemann'schen Fläche im Zahlkörperfall
- On \(\mathbb{Z}_ p\)-torsion of some Galois modules
- Remarks on \(K_ 2\) of number fields
- The structure of the 2-Sylow-subgroup of \(K_ 2({\mathfrak o})\). I
- A note on the 2-part of \(K_ 2({\mathfrak o}_ F)\) for totally real number fields F
- The structure of the 2-Sylow subgroup of \(K_ 2({\mathfrak o})\). II
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- Relations between \(K_2\) and Galois cohomology
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- On \(K_2\) and some classical conjectures in algebraic number theory
- On the values of zeta and L-functions. I
This page was built for publication: A cohomological study of the 2-primary part of \(K_2{\mathcal O})\)