Asymptotic behaviour of contact problems between two elastic materials through a fractal interface
DOI10.1016/j.matpur.2007.12.010zbMath1136.74030OpenAlexW2095215888MaRDI QIDQ924918
Alain Brillard, Mustapha El Jarroudi
Publication date: 29 May 2008
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.matpur.2007.12.010
Classical linear elasticity (74B05) Contact in solid mechanics (74M15) Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics (74G10) Homogenization in equilibrium problems of solid mechanics (74Q05)
Related Items (5)
Cites Work
- Schwarz-Christoffel mappings: A general approach
- On the integral representation of certain local functionals
- Dirichlet norms, capacities and generalized isoperimetric inequalities for Markov operators.
- Wiener's criterion and \(\Gamma\)-convergence
- Capacity methods in the theory of partial differential equations
- Quasiconformal mappings and extendability of functions in Sobolev spaces
- The trace to the boundary of Sobolev spaces on a snowflake
- An introduction to \(\Gamma\)-convergence
- Relaxed Dirichlet problem and shape optimization within the linear elasticity framework
- Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions
- Integral representation for a class of \(C^ 1\)-convex functionals
- Problèmes variationnels et théorie du potentiel non linéaire
- The dual of Besov spaces on fractals
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Asymptotic behaviour of contact problems between two elastic materials through a fractal interface