A superalgebraic interpretation of the quantization maps of Weil algebras
From MaRDI portal
Publication:925957
DOI10.1007/S10114-007-1022-9zbMath1146.17018arXivmath/0502150OpenAlexW2121377719MaRDI QIDQ925957
Publication date: 26 May 2008
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0502150
Poisson algebras (17B63) Cohomology of Lie (super)algebras (17B56) Quantizations, deformations for selfadjoint operator algebras (46L65)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the \(\rho\)-decomposition \(C({\mathfrak g})=\text{End }V_ \rho\otimes C(P)\), and the \({\mathfrak g}\)-module structure of \(\bigwedge {\mathfrak g}\)
- Geometry and classification of solutions of the classical dynamical Yang-Baxter equation
- Two applications of elementary knot theory to Lie algebras and Vassiliev invariants
- Clifford algebras and the classical dynamical Yang-Baxter equation
- Deformation quantization of Poisson manifolds
- The non-commutative Weil algebra
- Dirac cohomology for Lie superalgebras
- Dirac cohomology, unitary representations and a proof of a conjecture of Vogan
- Harmonic Analysis in Phase Space. (AM-122)
- Opérateurs différentiels bi-invariants sur un groupe de Lie
- Lie theory and the Chern–Weil homomorphism
This page was built for publication: A superalgebraic interpretation of the quantization maps of Weil algebras