Exact solution of the Dirac equation for a Coulomb and scalar potentials in the gravitational field of a cosmic string
From MaRDI portal
Publication:926989
DOI10.1016/j.physleta.2005.04.031zbMath1171.83363OpenAlexW2023717674MaRDI QIDQ926989
Geusa de A. Marques, Sandro G. Fernandes, Valdir B. Bezerra
Publication date: 21 May 2008
Published in: Physics Letters. A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.physleta.2005.04.031
Related Items
An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string ⋮ Influence of a cosmic string on the rate of pairs produced by the Coulomb potential ⋮ Thermal properties of the 2D Klein-Gordon oscillator in a cosmic string space-time ⋮ Generalized Dirac oscillator in cosmic string space-time ⋮ New exact solution of Dirac-Coulomb equation with exact boundary condition ⋮ Exact solutions of scalar bosons in the presence of the Aharonov-Bohm and Coulomb potentials in the gravitational field of topological defects ⋮ Quantum influence of magnetic flux on spin-0 scalar charged particles in the presence of external field in a spinning cosmic string space-time ⋮ Relativistic quantum motion of an electron in spinning cosmic string spacetime in the presence of uniform magnetic field and Aharonov-Bohm potential ⋮ SOLUTION OF THE DIRAC EQUATION WITH POSITION-DEPENDENT MASS IN A COULOMB AND SCALAR FIELDS IN A CONICAL SPACETIME
Cites Work
- Unnamed Item
- Boundary conditions for quantum mechanics on cones and fields around cosmic strings
- Some remarks on loop variables, holonomy transformation, and gravitational Aharonov-Bohm effect
- Classical and quantum scattering on a spinning cone
- Representations of Dirac equation in general relativity
- Gravitational analogs of the Aharonov–Bohm effect
- REMARKS ON SOME QUANTUM EFFECTS IN A GLOBAL MONOPOLE SPACE–TIME
- Non-relativistic quantum systems on topological defects spacetimes
- Global effects due to a chiral cone
- Harmonic oscillator interacting with conical singularities
- Über die Formulierung der Naturgesetze mit fünf homogenen Koordinaten. Teil II: Die Diracschen Gleichungen für die Materiewellen