Barsotti-Tate groups and \(p\)-adic representations of the fundamental group scheme
From MaRDI portal
Publication:927270
DOI10.1007/s00208-007-0205-0zbMath1145.14036OpenAlexW2027986328MaRDI QIDQ927270
Publication date: 4 June 2008
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00208-007-0205-0
\(p\)-divisible groupsBarsotti-Tate groupsfundamental group schemeDieudonne crystalKatz correspondence
Étale and other Grothendieck topologies and (co)homologies (14F20) Formal groups, (p)-divisible groups (14L05)
Related Items
THE DISTRIBUTION OF TORSION SUBSCHEMES OF ABELIAN VARIETIES, Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Théorie de Dieudonne cristalline. II
- F-isocrystals and De Rham cohomology. I
- The fundamental group-scheme
- Barsotti-Tate groups and crystals
- Heights of vector bundles and the fundamental group scheme of a curve
- On the fundamental group scheme
- On the slope filtration.
- Families of \(p\)-divisible groups with constant Newton polygon
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Categories tannakiennes
- The crystals associated to Barsotti-Tate groups: with applications to Abelian schemes
- Equations différentielles à points singuliers réguliers
- Complexe de de\thinspace Rham-Witt et cohomologie cristalline
- Schémas en groupes de type $(p,\ldots,p)$
- Foliations in moduli spaces of abelian varieties
- Purity of the stratification by Newton polygons
- Crystalline Dieudonné theory over excellent schemes